Bibliography

[1]

John C. Gore, Mark S. Brown, Jianhui Zhong, K. Fritz Mueller, and William Good. NMR relaxation of water in hydrogel polymers: A model for tissue. Magnetic Resonance in Medicine, 9(3):325–332, March 1989. doi:10.1002/mrm.1910090304.

[2]

Bertil Jacobson, Weston A. Anderson, and James T. Arnold. A Proton Magnetic Resonance Study of the Hydration of Deoxyribonucleic Acid. Nature, 173(4408):772–773, April 1954. doi:10.1038/173772a0.

[3]

H.E Rorschach and C.F Hazlewood. Protein dynamics and the NMR relaxation time T1 of water in biological systems. Journal of Magnetic Resonance (1969), 70(1):79–88, October 1986. doi:10.1016/0022-2364(86)90364-1.

[4]

M. Odelius, A. Laaksonen, M.H. Levitt, and J. Kowalewski. Intermolecular Dipole-Dipole Relaxation. A Molecular Dynamics Simulation. Journal of Magnetic Resonance, Series A, 105(3):289–294, December 1993. doi:10.1006/jmra.1993.1283.

[5]

Jean-Philippe Grivet. NMR relaxation parameters of a Lennard-Jones fluid from molecular-dynamics simulations. The Journal of Chemical Physics, 123(3):034503, July 2005. doi:10.1063/1.1955447.

[6]

G. Lippens, D. Van Belle, S.J. Wodak, and J. Jeener. T1 relaxation time of water from a molecular dynamics simulation. Molecular Physics, 80(6):1469–1484, December 1993. doi:10.1080/00268979300103151.

[7]

C. Calero, J. Martí, and E. Guàrdia. 1H Nuclear Spin Relaxation of Liquid Water from Molecular Dynamics Simulations. The Journal of Physical Chemistry B, 119(5):1966–1973, February 2015. doi:10.1021/jp510013q.

[8]

Philip M. Singer, Dilip Asthagiri, Walter G. Chapman, and George J. Hirasaki. Molecular dynamics simulations of NMR relaxation and diffusion of bulk hydrocarbons and water. Journal of Magnetic Resonance, 277:15–24, April 2017. doi:10.1016/j.jmr.2017.02.001.

[9]

P. M. Singer, D. Asthagiri, W. G. Chapman, and G. J. Hirasaki. NMR spin-rotation relaxation and diffusion of methane. The Journal of Chemical Physics, 148(20):204504, May 2018. doi:10.1063/1.5027097.

[10]

Adam Philips and Jochen Autschbach. Proton NMR relaxation from molecular dynamics: intramolecular and intermolecular contributions in water and acetonitrile. Physical Chemistry Chemical Physics, 21(48):26621–26629, 2019. doi:10.1039/C9CP04976B.

[11]

Alexander E. Khudozhitkov, Sergei S. Arzumanov, Daniil I. Kolokolov, Dieter Freude, and Alexander G. Stepanov. Dynamics of propene and propane in ZIF-8 probed by solid-state \textsuperscript 2 H NMR. Physical Chemistry Chemical Physics, 22(10):5976–5984, 2020. doi:10.1039/D0CP00270D.

[12]

Simon Gravelle, Sabina Haber-Pohlmeier, Carlos Mattea, Siegfried Stapf, Christian Holm, and Alexander Schlaich. NMR Investigation of Water in Salt Crusts: Insights from Experiments and Molecular Simulations. Langmuir, 39(22):7548–7556, June 2023. doi:10.1021/acs.langmuir.3c00036.

[13]

M. Becher, T. Wohlfromm, E. A. Rössler, and M. Vogel. Molecular dynamics simulations vs field-cycling NMR relaxometry: Structural relaxation mechanisms in the glass-former glycerol revisited. The Journal of Chemical Physics, 154(12):124503, March 2021. doi:10.1063/5.0048131.

[14]

Adam Philips and Jochen Autschbach. Quadrupolar NMR Relaxation of Aqueous \textsuperscript 127 I \textsuperscript – , \textsuperscript 131 Xe, and \textsuperscript 133 Cs \textsuperscript + : A First-Principles Approach from Dynamics to Properties. Journal of Chemical Theory and Computation, 16(9):5835–5844, September 2020. doi:10.1021/acs.jctc.0c00581.

[15]

Iurii Chubak, Laura Scalfi, Antoine Carof, and Benjamin Rotenberg. NMR Relaxation Rates of Quadrupolar Aqueous Ions from Classical Molecular Dynamics Using Force-Field Specific Sternheimer Factors. Journal of Chemical Theory and Computation, 17(10):6006–6017, October 2021. doi:10.1021/acs.jctc.1c00690.

[16]

P. H. Fries and E. Belorizky. Monte Carlo calculation of the intermolecular dipolar spin relaxation in a liquid solution. The Journal of Chemical Physics, 79(3):1166–1169, August 1983. doi:10.1063/1.445919.

[17]

H. E. A. Huitema and J. P. vanderEerden. Can Monte Carlo simulation describe dynamics? A test on Lennard-Jones systems. The Journal of Chemical Physics, 110(7):3267–3274, February 1999. doi:10.1063/1.478192.

[18]

Simon Gravelle, David Beyer, Mariano Brito, Alexander Schlaich, and Christian Holm. Assessing the Validity of NMR Relaxation Rates Obtained from Coarse-Grained Simulations of PEG–Water Mixtures. The Journal of Physical Chemistry B, 127(25):5601–5608, June 2023. doi:10.1021/acs.jpcb.3c01646.

[19]

Józef Kowalewski and Lena Mäler. Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications. Number 2 in Series in Chemical Physics. Taylor & Francis, New York, 2006. ISBN 978-0-7503-0964-6.

[20]

N. Bloembergen, E. M. Purcell, and R. V. Pound. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Physical Review, 73(7):679–712, April 1948. doi:10.1103/PhysRev.73.679.

[21]

Paul S. Hubbard. Theory of Nuclear Magnetic Relaxation by Spin-Rotational Interactions in Liquids. Physical Review, 131(3):1155–1165, August 1963. doi:10.1103/PhysRev.131.1155.

[22]

Raúl Fuentes-Azcatl and José Alejandre. Non-Polarizable Force Field of Water Based on the Dielectric Constant: TIP4P/epsilon. The Journal of Physical Chemistry B, 118(5):1263–1272, February 2014. doi:10.1021/jp410865y.

[23]

Simon Gravelle, Jacob R. Gissinger, and Axel Kohlmeyer. A Set of Tutorials for the LAMMPS Simulation Package. March 2025. arXiv:2503.14020, doi:10.48550/arXiv.2503.14020.

[24]

Aidan P. Thompson, H. Metin Aktulga, Richard Berger, Dan S. Bolintineanu, W. Michael Brown, Paul S. Crozier, Pieter J. In 'T Veld, Axel Kohlmeyer, Stan G. Moore, Trung Dac Nguyen, Ray Shan, Mark J. Stevens, Julien Tranchida, Christian Trott, and Steven J. Plimpton. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271:108171, February 2022. doi:10.1016/j.cpc.2021.108171.

[25]

Y. Ayant, E. Belorizky, J. Aluzon, and J. Gallice. Calcul des densités spectrales résultant d'un mouvement aléatoire de translation en relaxation par interaction dipolaire magnétique dans les liquides. Journal de Physique, 36(10):991–1004, October 1975. doi:10.1051/jphys:019750036010099100.

[26]

Lian-Pin Hwang and Jack H. Freed. Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. The Journal of Chemical Physics, 63(9):4017–4025, September 2008. doi:10.1063/1.431841.

[27]

Simon Gravelle, Roland R. Netz, and Lydéric Bocquet. Adsorption Kinetics in Open Nanopores as a Source of Low-Frequency Noise. Nano Letters, 19(10):7265–7272, October 2019. doi:10.1021/acs.nanolett.9b02858.

[28]

H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24):6269–6271, November 1987. doi:10.1021/j100308a038.

[29]

William L. Jorgensen, Jayaraman Chandrasekhar, Jeffry D. Madura, Roger W. Impey, and Michael L. Klein. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2):926–935, July 1983. doi:10.1063/1.445869.

[30]

K. Krynicki. Proton spin-lattice relaxation in pure water between 0°C and 100°C. Physica, 32(1):167–178, January 1966. doi:10.1016/0031-8914(66)90113-3.

[31]

J. C. Hindman, A. Svirmickas, and M. Wood. Relaxation processes in water. A study of the proton spin-lattice relaxation time. The Journal of Chemical Physics, 59(3):1517–1522, September 2003. doi:10.1063/1.1680209.

[32]

Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to Applications. Number Volume 1 in Computational Science Series. Academic press, San Diego, 2nd ed edition, 2002. ISBN 978-0-12-267351-1.

[33]

M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, Oxford, United Kingdom, second edition edition, 2017. ISBN 978-0-19-880319-5 978-0-19-880320-1.