Theory ====== The system of interest here is an ensemble of identical spins characterized by a gyromagnetic ratio :math:`\gamma_I` and spin quantum number :math:`I`. For :math:`^{1} \text{H}`, the most abundant isotope of hydrogen, :math:`I = 1/2` and :math:`\gamma_I = 26.752` rad/T/s. For :math:`^{13} \text{C}`, a natural and stable isotope of carbon, :math:`I = 1/2` and :math:`\gamma_I = 6.728` rad/T/s :cite:`kowalewskiNuclearSpinRelaxation2006`. One assumption behind the theory presented here is that cross-correlation terms can be neglected; see Ref. :cite:`lippensT1RelaxationTime1993`. When spin-lattice relaxation is dominated by fluctuations of the magnetic dipole-dipole interaction, as is the case for protons in molecular systems, the rates :math:`R_1 (\omega)` and :math:`R_2 (\omega)` are related to the spectral densities :math:`J^{(m)}(\omega)` of these fluctuations via the Bloembergen-Purcell-Pound (BPP) equations :cite:`bloembergenRelaxationEffectsNuclear1948`: .. math:: :label: eq_BPP R_1 (\omega) & = & K \left[ J^{(1)} (\omega) + J^{(2)} (2 \omega) \right], R_2 (\omega) & = & K \left[ J^{(0)} (0) + 10 J^{(1)} (\omega) + J^{(2)} (2 \omega) \right] / 4, where .. math:: K = \dfrac{3}{2}\left(\dfrac{\mu_0}{4 \pi}\right)^2 \hbar^2 \gamma^4 I (I+1), where :math:`\mu_0` is the vacuum permeability, and :math:`\hbar` the Planck constant (divided by :math:`2 \pi`). The constant :math:`K` has units of :math:`\text{m}^6/\text{s}^2`. The spectral densities :math:`J^{(m)} (\omega)` in Eq. :eq:`eq_BPP` can be obtained as the Fourier transform of the autocorrelation functions :math:`G^{(m)}(\tau)`: .. math:: J^{(m)} (\omega) = \int_0^\infty G^{(m)} (\tau) \cos(\omega \tau) \mathrm d \tau. The spectral densities are a measure of the distribution of the fluctuations of :math:`G^{(m)}(\tau)` among different frequencies. They provide information on the distribution of the power available for causing spin transitions at different frequencies. The autocorrelation functions :math:`G^{(m)}(\tau)` are given by .. math:: G^{(m)} (\tau) = \left< F_2^{(m)} [\textbf{r}_{ij} (t)] F_2^{*(m)} [\textbf{r}_{ij} (0)] \right> where :math:`F_2^{(m)}` are complex functions of the vector :math:`\textbf{r}_{ij}` between spin pairs, with norm :math:`r_{ij}` and orientation :math:`\Omega_{ij}` with respect to a reference applied magnetic field, assumed to be in the :math:`\textbf{e}_z` direction. The functions :math:`F_2^{(m)}` are defined as .. math:: F_2^{(m)} [\textbf{r}_{ij} (t)] = \alpha_m \dfrac{Y_2^{(m)} [\Omega_{ij} (t)]}{r_{ij}^3 (t)} where :math:`Y_2^{(m)}` are normalized spherical harmonics and :math:`\alpha_0^2 = 16 \pi /5`, :math:`\alpha_1^2 = 8 \pi /15`, and :math:`\alpha_2^2 = 32 \pi / 15`. Therefore, the correlation functions can be written as: .. math:: G^{(m)} (\tau) = \dfrac{\alpha_m^2}{N} \sum_i \sum_{j \ne i} \dfrac{Y_2^{(m)} [\Omega_{ij} (0)]}{r_{ij}^3 (0)} \dfrac{Y_2^{*(m)} [\Omega_{ij} (\tau)]}{r_{ij}^3 (\tau)}, where :math:`N` is the number of spins. Intra/inter contributions ------------------------- Intra-molecular and inter-molecular contributions to :math:`R_1` and :math:`R_2` can be extracted separately by splitting the correlation functions as: .. math:: :label: G_intra G^{(m)}_\text{intra} (t) = \dfrac{\alpha_m^2}{N} \sum_i \sum_{j \in M_i} \dfrac{Y_2^{(m)} [\Omega_{ij} (0)]}{r_{ij}^3 (0)} \dfrac{Y_2^{*(m)} [\Omega_{ij} (\tau)]}{r_{ij}^3 (\tau)}, .. math:: :label: G_inter G^{(m)}_\text{inter} (t) = \dfrac{\alpha_m^2}{N} \sum_i \sum_{j \notin M_i} \dfrac{Y_2^{(m)} [\Omega_{ij} (0)]}{r_{ij}^3 (0)} \dfrac{Y_2^{*(m)} [\Omega_{ij} (\tau)]}{r_{ij}^3 (\tau)}, where :math:`j \in M_i` and :math:`j \notin M_i` refer to spins from the same molecule as :math:`i`, and from different molecules than :math:`i`, respectively. Intra-molecular relaxation is usually attributed to the rotational motion of the molecules, and inter-molecular relaxation to their translational motion. Although this assumption facilitates interpretation, it is not exact and must be applied cautiously :cite:`hubbardTheoryNuclearMagnetic1963`. Isotropic system ---------------- For isotropic systems, the correlation functions are proportional to each other: :math:`G^{(0)} = 6 G^{(1)}`, and :math:`G^{(0)} = 6 / 4 G^{(2)}` :cite:`becherMolecularDynamicsSimulations2021`. Therefore, there is no need to calculate all three correlation functions, and :math:`G^{(0)} (t)` is usually the only one computed, which considerably reduces the computational effort. In that case, the rates :math:`R_1 (\omega)` and :math:`R_2 (\omega)` can be written as: .. math:: R_1 &=& \frac{K}{6} \left[ J^{(0)} (\omega_0) + 4 J^{(0)} (2 \omega_0) \right], R_2 &=& \frac{K}{6} \left[ J^{(0)} (0) + \frac{5}{2} J^{(0)} (\omega_0) + J^{(0)} (2 \omega_0) \right], where .. math:: :label: F_2_0 F_2^{(0)} [\textbf{r}_{ij} (t)] & = & \alpha_m \dfrac{Y_2^{(0)} [\Omega_{ij} (t)]}{r_{ij}^3 (t)} & = & \dfrac{3 \cos^2 \theta_\text{ij} (t) - 1}{r_{ij}^3 (t)} Here, we check the validity of the relation :math:`G^{(0)} = 6 G^{(1)} = 6 / 4 G^{(2)}` on a simple bulk water system with 4000 molecules, similar to the approach taken in :cite:`becherMolecularDynamicsSimulations2021` with glycerol. The proportionality relation is well verified (Figure below). .. image:: ../figures/illustrations/bulk-water/effect_of_anisotropy-dark.png :class: only-dark :alt: NMR results obtained from the LAMMPS simulation of water .. image:: ../figures/illustrations/bulk-water/effect_of_anisotropy-light.png :class: only-light :alt: NMR results obtained from the LAMMPS simulation of water .. container:: figurelegend Figure: Test of the validity of the relation :math:`G^{(0)} = 6 G^{(1)} = 6 / 4 G^{(2)}` on a bulk water system; see text for details.